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• As preparation for the next generation of aircraft, advanced high-
efficiency engine concepts have been developed to demonstrate new 
technology.

Background
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The Advanced Geared Turbofan, 30,000 lbf (AGTF30) engine simulation 
was developed to investigate possible next generation engine system 
designs including:
1. Ultra-high bypass
2. Small core
3. Variable area fan nozzle (VAFN)

• Objective:
– Detail the generation of a full envelope, classical control system for the AGTF30 

engine.
– Highlight challenges associated with the control system concept of this advanced 

engine. 

• Purpose:
– To provide a dynamic platform for next generation engine system research.
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• The AGTF30 was created using the Toolbox for the Modeling and 
Analysis of Thermodynamic Systems (T-MATS)

• Modular thermodynamic modeling framework created by NASA
• Built on top of MATLAB/Simulink
• Package highlights:

– General thermodynamic simulation design framework
– Variable input system solvers
– Advanced turbo-machinery block sets
– Control system block sets
– Non-proprietary, free of export restriction and open source with +4500 

downloads, https://github.com/nasa/T-MATS/releases

Modeling Platform
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• Advanced Geared Turbofan features
– Variable area fan nozzle (VAFN)
– Dual spool with low pressure shaft connected to fan via a gear box

• Performance
– BPR = 24, OPR = 50, TIT = 3000, TSFC = 0.46 at cruise
– 30,000 lbf takeoff thrust 

• Control Effectors: VAFN, fuel flow (Wf), and variable bleed valve (VBV)

Engine Model Description
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Fuel Control Architecture
• Fuel Control methodology based on literature

– Power Management generates fan speed request based on power lever angle (PLA)
– Fan speed controller generates a fuel flow request
– Sets of limiters adjust the fuel flow request to operate the engine safely, avoiding engine 

stall, exceeding structural limits, combustor blowout, etc.
– Controllers utilize PI method, tuned to meet requirements throughout the envelope
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Acceleration limit 
for stall margin mitigation 

Structural limits

Deceleration and Pressure
limits for combustor blow 
out protection



National Aeronautics and Space Administration

www.nasa.gov

Fuel Control Power Management

• Fuel is the main effector to control the engine, and thrust is the dominant 
engine output.

• AGTF30 utilizes a classical control strategy
– Thrust cannot be sensed, so fan speed (Nf) was selected as the thrust surrogate
– Advantages of using fan speed:

• Generally linear relationship with thrust (given constant environment and consistent 
variable geometry positions).  

• Sensor availability and low susceptibility to noise
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Relationship between 
Thrust and Nf sea level and 
static conditions
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Fuel Control Tuning
• PI controller gains tuned to ideal values throughout envelope

– Linear models were generated throughout the envelope and at various power 
levels

– PI controller gains were tuned for each defined linear model.
– Gains were  collected into schedules that provide the optimum gain at each 

operational point.
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Operational Envelope
Speed Controller
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Setting Fuel Limiters

• Limiters designed to maintain safe engine operation
– Set to avoid engine stall, structural limits, and engine blow out.

• Structural limits based on anticipated next generation requirements.
• Stall mitigated by limiting acceleration with a maximum Wf/Ps3 limit
• Hypothetical engine blow out mitigated with minimum Wf/Ps3 and Ps3 limits

– Limiters tuned to allow acceleration from idle to 95% takeoff power within 5 
seconds

– Minimum stall margin requirement set to 8%.
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VBV Control Architecture

• Variable bleed valve opens to reduce low pressure compressor (LPC) 
pressure ratio (PR), increasing stall margin.

– Schedules constructed to maintain 10% stall margin during steady-state operation. 
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Opening VBV to 
increase LPC stall margin
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VAFN Control Architecture

• Variable area fan 
nozzle area scheduled 
to maintain optimal fan 
efficiency.

– Nozzle area increased to 
reduce fan PR

– Nozzle area decreased to 
increase fan PR
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Fan Performance

VAFN Schedule

Optimal efficiency 
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Actuator Modeling

• Fuel metering valve (FMV)
– First order actuator with a dynamic response much faster than rotor dynamics

• Variable bleed valve (VBV) 
– First order actuator with a dynamic response much faster than rotor dynamics
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• Variable area fan nozzle (VAFN)
– Research into VAFN actuation is ongoing
– Thermally activated shape memory alloy is being considered as a solution

• Advantages 
– High power-to-weight ratio

• Challenges
– Maximum area reduction may not meet ideal nozzle requirements
– Slew rate may not meet engine transient requirements.
– Low technology readiness level (TRL)

– Due to uncertainty in actuator characteristics the AGTF30 utilizes an idealized 
actuation system as default, settling time equivalent to 0.8s. This value will be 
updated as more research becomes available.
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VAFN response study
• The AGTF30 was used for a simple study to find the minimum settling 

time requirement for a hypothetical shape memory alloy actuator.
– Traces show acceleration from Idle to Full power then a deceleration back to idle
– Plots b and c show divergence from ideal actuation (tracks control request perfectly)
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Settling times greater than 9.8s, generate large losses of thrust

Thrust loss during 
acceleration

Increase in 
fan speed 
during 
acceleration

Stall margin 
positive at 
all points
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Model Validation

– Engine idling 
– Acceleration from idle 

to full power followed 
by a take off at sea 
level static conditions

– Engine climbs to cruise 
at 35,000 ft

– Deceleration and 
descent

– Aircraft lands then  
returns to idle
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• Engine Model validation
• Simulation of an abbreviated mission profile
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Model Validation, full profile
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For the validation profile, all parameters remain within acceptable parameters 
and the engine performs as expected

Control regulators hit: accel, 
T45, Ps3, and Nf.
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Model Validation, takeoff and climb
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During acceleration and climb to altitude the control regulators act to maintain 
stall margin and maximum T45 limit

T45 max

Wf/Ps3 max

Approaches 
min limit
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Model Validation, approach and landing
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During approach and landing the control regulators act to maintain stall margin, 
maximum Nf limit and minimum Ps3 limit

Ps3 min

Wf/Ps3 
max

Approaches 
min limit

Nf max
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Simulation Operation
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Folder containing setup files

Link to input definitions

Engine Model
Steady-State, Dynamic, and 
Linearization models, all use 
the same Engine Model file

Excel spread sheet for 
quick input definition

Plotting scripts
Simulation setup and clean 
up scripts

AGTF30 class definition
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Setup Everything
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Setup_everything.m - Loads bus 
objects and MATLAB Workspace 
(MWS) structure containing all 
simulation  inputs
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Input File

20

• Enter inputs manually 

• Or use an excel spread sheet



National Aeronautics and Space Administration

www.nasa.gov

Running the Model
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Data Presentation
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Data gathered in an 
output structure.

Formatted to 
make use of 
T-MATS auto 
plotting tools
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Summary
• A simulation of a next generation engine has been presented

– Advanced Geared Turbofan 30,000lbf (AGTF30)
• Ultrahigh bypass, small engine core, VAFN design
• Full envelope dynamic control system 
• Built with the Toolbox for the Modeling and Analysis of Thermodynamic 

systems (T-MATS), https://github.com/nasa/T-MATS/releases
• Simulation awaiting approval to be made publically available

• Control system design described 
– Fuel control based on classical architecture
– Variable geometries scheduled

• Sensitivity study on VAFN slew rate
– Shape memory alloy is currently being considered for use as the VAFN 

actuator, and actuator slew rate has been shown to be a limiting factor.
– Analysis of ideal and potential slew rates show significant performance 

degradation at actuator settling times greater than 9.8s
• AGTF30 simulation meets all requirements 

– Simulation provides a realistic and dynamic platform for research into 
advanced geared turbofan technologies.
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